3.187 \(\int \frac{\sec ^4(e+f x)}{a+b \sec ^2(e+f x)} \, dx\)

Optimal. Leaf size=52 \[ \frac{\tan (e+f x)}{b f}-\frac{a \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{b^{3/2} f \sqrt{a+b}} \]

[Out]

-((a*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(b^(3/2)*Sqrt[a + b]*f)) + Tan[e + f*x]/(b*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0676325, antiderivative size = 52, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {4146, 388, 205} \[ \frac{\tan (e+f x)}{b f}-\frac{a \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{b^{3/2} f \sqrt{a+b}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]^4/(a + b*Sec[e + f*x]^2),x]

[Out]

-((a*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b]])/(b^(3/2)*Sqrt[a + b]*f)) + Tan[e + f*x]/(b*f)

Rule 4146

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/
2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sec ^4(e+f x)}{a+b \sec ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1+x^2}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\tan (e+f x)}{b f}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a+b+b x^2} \, dx,x,\tan (e+f x)\right )}{b f}\\ &=-\frac{a \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b}}\right )}{b^{3/2} \sqrt{a+b} f}+\frac{\tan (e+f x)}{b f}\\ \end{align*}

Mathematica [C]  time = 0.804315, size = 192, normalized size = 3.69 \[ \frac{\sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b) \left (\sqrt{a+b} \sec (e) \sin (f x) \sqrt{b (\sin (e)+i \cos (e))^4} \sec (e+f x)+a (\cos (2 e)-i \sin (2 e)) \tan ^{-1}\left (\frac{(\cos (2 e)-i \sin (2 e)) \sec (f x) (a \sin (2 e+f x)-(a+2 b) \sin (f x))}{2 \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4}}\right )\right )}{2 b f \sqrt{a+b} \sqrt{b (\cos (e)-i \sin (e))^4} \left (a+b \sec ^2(e+f x)\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]^4/(a + b*Sec[e + f*x]^2),x]

[Out]

((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*(a*ArcTan[(Sec[f*x]*(Cos[2*e] - I*Sin[2*e])*(-((a + 2*b)*Sin[f*
x]) + a*Sin[2*e + f*x]))/(2*Sqrt[a + b]*Sqrt[b*(Cos[e] - I*Sin[e])^4])]*(Cos[2*e] - I*Sin[2*e]) + Sqrt[a + b]*
Sec[e]*Sec[e + f*x]*Sqrt[b*(I*Cos[e] + Sin[e])^4]*Sin[f*x]))/(2*b*Sqrt[a + b]*f*(a + b*Sec[e + f*x]^2)*Sqrt[b*
(Cos[e] - I*Sin[e])^4])

________________________________________________________________________________________

Maple [A]  time = 0.059, size = 47, normalized size = 0.9 \begin{align*}{\frac{\tan \left ( fx+e \right ) }{fb}}-{\frac{a}{fb}\arctan \left ({\tan \left ( fx+e \right ) b{\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \right ){\frac{1}{\sqrt{ \left ( a+b \right ) b}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)^4/(a+b*sec(f*x+e)^2),x)

[Out]

tan(f*x+e)/b/f-1/f*a/b/((a+b)*b)^(1/2)*arctan(tan(f*x+e)*b/((a+b)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 0.542119, size = 678, normalized size = 13.04 \begin{align*} \left [-\frac{\sqrt{-a b - b^{2}} a \cos \left (f x + e\right ) \log \left (\frac{{\left (a^{2} + 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} - 2 \,{\left (3 \, a b + 4 \, b^{2}\right )} \cos \left (f x + e\right )^{2} - 4 \,{\left ({\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{3} - b \cos \left (f x + e\right )\right )} \sqrt{-a b - b^{2}} \sin \left (f x + e\right ) + b^{2}}{a^{2} \cos \left (f x + e\right )^{4} + 2 \, a b \cos \left (f x + e\right )^{2} + b^{2}}\right ) - 4 \,{\left (a b + b^{2}\right )} \sin \left (f x + e\right )}{4 \,{\left (a b^{2} + b^{3}\right )} f \cos \left (f x + e\right )}, \frac{\sqrt{a b + b^{2}} a \arctan \left (\frac{{\left (a + 2 \, b\right )} \cos \left (f x + e\right )^{2} - b}{2 \, \sqrt{a b + b^{2}} \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right ) \cos \left (f x + e\right ) + 2 \,{\left (a b + b^{2}\right )} \sin \left (f x + e\right )}{2 \,{\left (a b^{2} + b^{3}\right )} f \cos \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(-a*b - b^2)*a*cos(f*x + e)*log(((a^2 + 8*a*b + 8*b^2)*cos(f*x + e)^4 - 2*(3*a*b + 4*b^2)*cos(f*x +
 e)^2 - 4*((a + 2*b)*cos(f*x + e)^3 - b*cos(f*x + e))*sqrt(-a*b - b^2)*sin(f*x + e) + b^2)/(a^2*cos(f*x + e)^4
 + 2*a*b*cos(f*x + e)^2 + b^2)) - 4*(a*b + b^2)*sin(f*x + e))/((a*b^2 + b^3)*f*cos(f*x + e)), 1/2*(sqrt(a*b +
b^2)*a*arctan(1/2*((a + 2*b)*cos(f*x + e)^2 - b)/(sqrt(a*b + b^2)*cos(f*x + e)*sin(f*x + e)))*cos(f*x + e) + 2
*(a*b + b^2)*sin(f*x + e))/((a*b^2 + b^3)*f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{4}{\left (e + f x \right )}}{a + b \sec ^{2}{\left (e + f x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)**4/(a+b*sec(f*x+e)**2),x)

[Out]

Integral(sec(e + f*x)**4/(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.18399, size = 93, normalized size = 1.79 \begin{align*} -\frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b + b^{2}}}\right )\right )} a}{\sqrt{a b + b^{2}} b} - \frac{\tan \left (f x + e\right )}{b}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)^4/(a+b*sec(f*x+e)^2),x, algorithm="giac")

[Out]

-((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b + b^2)))*a/(sqrt(a*b + b^2)*b) - tan(f
*x + e)/b)/f